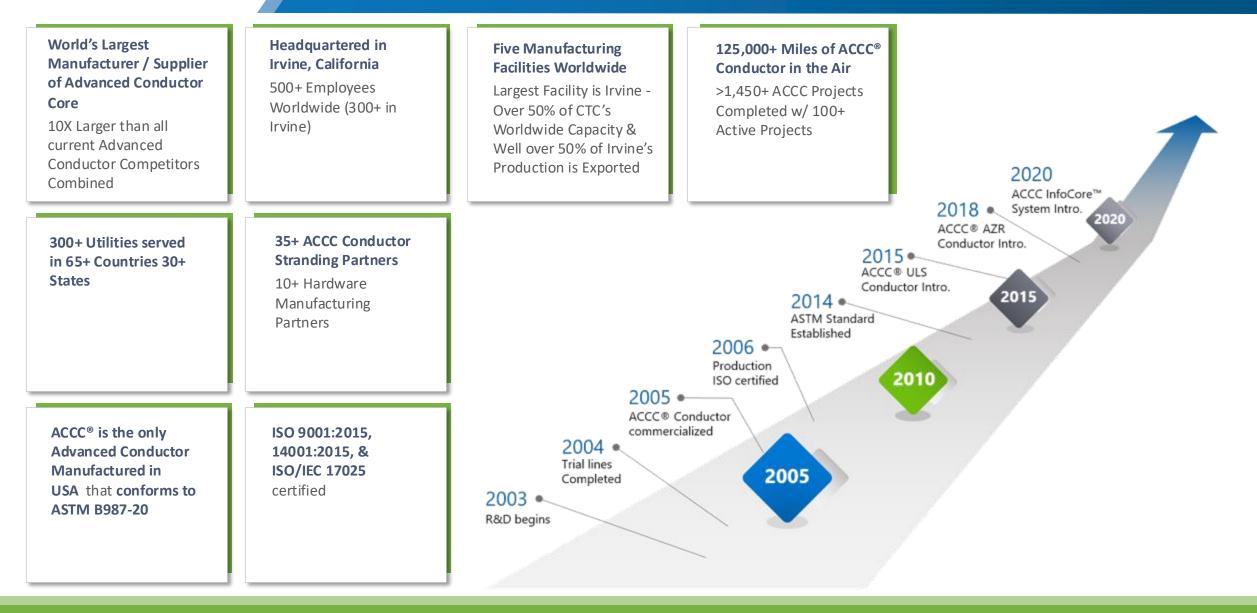
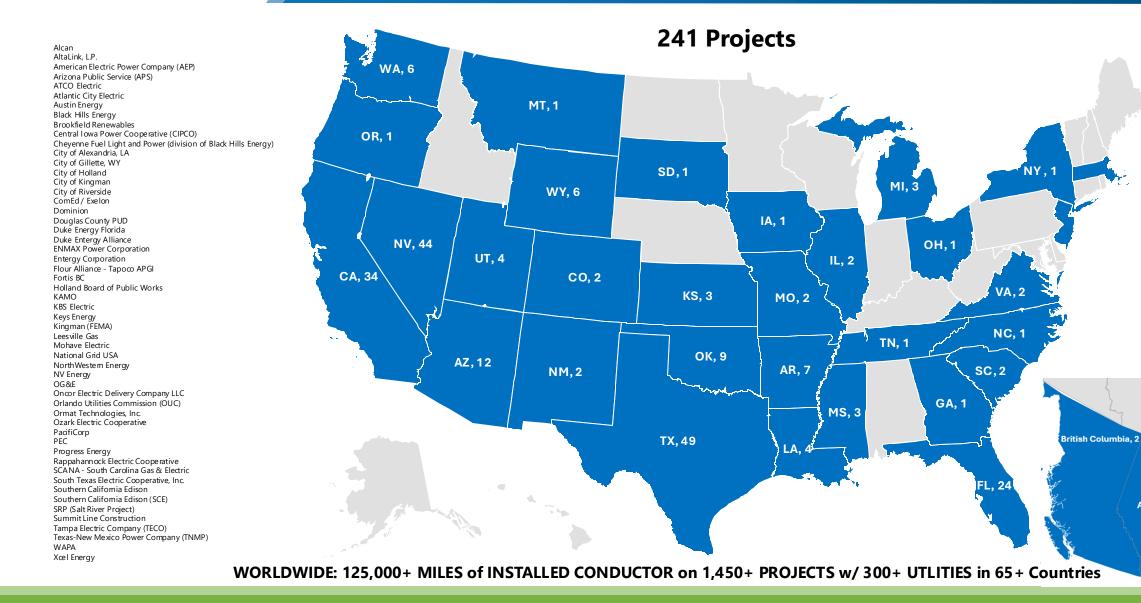
ACCC[®] Advanced Conductor

THE REAL PROPERTY OF

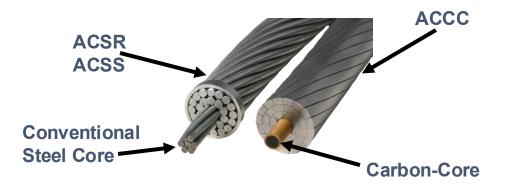

Cost-effective Transmission Expansion

ISO-NE PAC Forum


June 18, 2025

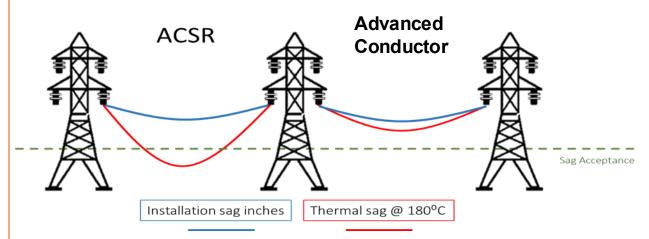
CTC Global Overview

ACCC® Conductor Installations- North America



3

Updated FEB 2025


Alberta, 5

Advanced Conductors – Designed for Performance

Advanced vs. Conventional

- Replace steel and hard aluminum with carbon and annealed aluminum
- More aluminum that is more efficient equals:
 - 2x capacity capability
 - More efficient (~30% lower resistance)
- Much lower thermal expansion means 50% less thermal sag
- Corrosion resistant

Less Sag

- Less sag means smaller towers or fewer towers
- Less sag means wildfire risk mitigation

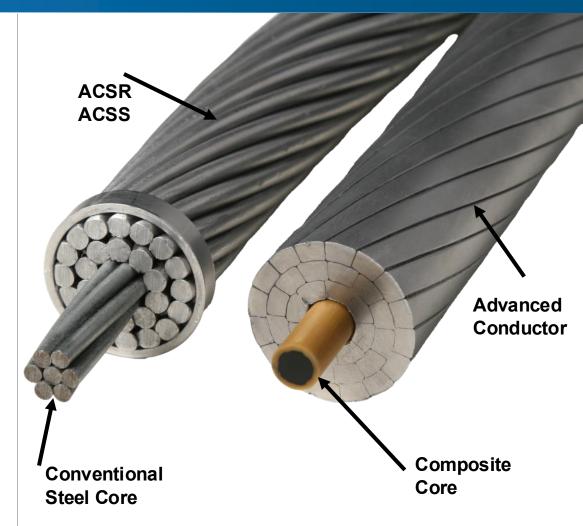
The Department of Energy defines Advanced Conductors* as: "Conductors that increase line capacity by >1.5x (at a similar weight per foot); advanced conductors use composite core (instead of traditional steel cores) to improve efficiency and increase capacity with limited sag"

^{*} April 2024 Liftoff Report formerly available at https://liftoff.energy.gov/wpcontent/uploads/2024/04/Liftoff_Innovative-Grid-Deployment_Final_4.15.pdf

Trusted by US and Global Customers

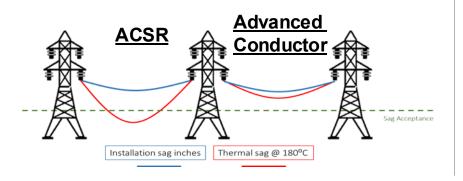
CTC GLOBAL

Advanced Reconductoring: A Unique Capability


Even after more aluminum is added, the carbon-core Advanced Conductor **weighs about the same** as the conventional ACSR of the same diameter.

The carbon-core is **stronger and lighter** than the same diameter steel core.

Enables a unique capability: advanced reconductoring


High-efficiency carbon-core Advanced Conductor can be installed on the same tower/structure that was designed for the conventional ACSR (same diameter & weight) and provides much greater capacity and energy efficiency (with MUCH lower sag).

Advanced reconductoring also provides an option to defer noncritical line rebuilds and increase line capacity sooner; with a lower total NPV compared to rebuilding the line early

CTC GLOBAL What <u>Does Advanced Reconductoring Enable?</u>

SPEED. LOWER COST. MORE CAPACITY & LOWER LOSSES. WILDFIRE RISK MITIGATION & RESILIENCE.

Reconductoring with Advanced Conductor using the same structures in existing ROW, results in:

* Construction & Environmental permits (& processes) are eliminated

** GREATLY REDUCED sag; LOWER operating temperature of lines – Max 356°F v. 482°F for ACSS; ACCC can better withstand wildfire temperatures for faster service restoration - RESILIENCE

SCE Saved \$87M & Increased Line Capacity

Utility:	Southern California Edison			
Line configuration:	230 kV 137-mile single circuit line			
ACCC [®] conductor installed:	411 conductor miles			
Project objective:	SCE needed to rebuild 137 miles of the Big Creek transmission corridor to mitigate sag violations			
Project details with traditional vs ACCC [®] conductor				
	ACSR	ACCC [®]		
Rebuild/retrofit required:	Yes	No		
Conductor type:	ACSR Dove	ACCC [®] Dove		
Destadaed				
Project cost:	\$135M	\$48M		

ACCC[®] Solution

Increased line capacity

Increased the line's rating from 936 amps to 1520 amps, adding 60%+ more capacity

Sag violation mitigation

Realized **40% improvement in line sag**, mitigating all violations and increasing overall line safety

Reduced line losses

Reduced line loss by 30% enabling conservation of generation capacity and saving \$85M in customer costs

Reconductoring with ACCC[®] vs rebuilding saved years of time in permitting and construction, provided significant environmental advantages, and saved tens of millions of dollars in project costs.

SCE

EDISON

More than Reconductoring

Advanced Reconductoring	2X capacity with ACCC [®] on existing structures with minimal retrofitting	Similar capacity upgrade with traditional conductors requires more structure replacements or full rebuilds with significantly higher total project costs
New Lines & Rebuilds	Substantially lower structure & construction costs when using ACCC®	Lower sag allows for longer span (fewer structures) and/ or shorter structures requiring less right of way
Adding Unexpected Needed Capacity	Faster & lower cost project completion when replacing ACSR with ACCC®	Avoid costly project redesign and delays to quickly increase line capacity between project design and pre-construction stages due to unforeseen increased capacity needs

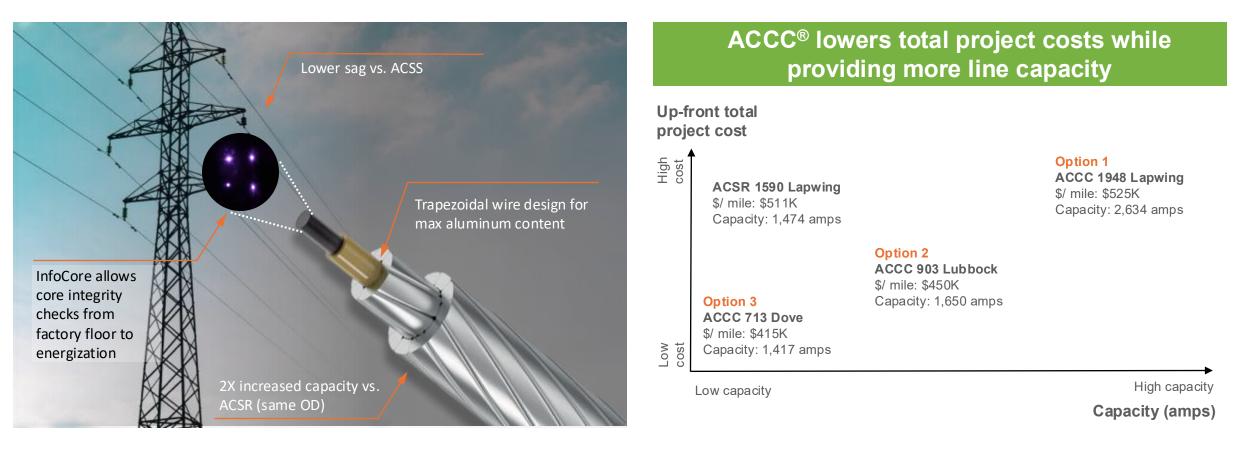
Adding Unexpected Needed Capacity Mid-Project

Situation	Problem solving with ACCC [®]	Results
Need to add more capacity than in initial project design	Cos swit	\$30M Cost savings from switching to ACCC from ACSR
 2023: Pre-construction begins post surveys, project planning, land acquisition and permitting During this time, generation growth forecasts grew faster than originally planned As a result, original line capacity would be insufficient to meet the demand 	 Utilities replaced ACSR with ACCC[®] Conductors of same weight and diameter and increased line capacity by 65% 1,100+ mi of ACCC[®] to be installed with same line design and right-of-way meeting construction schedule for planned 2026 in-service date 	65% Extra line capacity added future proofing the grid Comparison of the series of the

Significant savings on total project costs for

new build and rebuild projects by lowering structure and construction costs

Lower sag and weight of ACCC[®] Conductor allows for either **longer span (fewer structures)** and/ or **shorter structures** for the same line


- Saves you time and capital
- Reduces new ROW permitting and timeline
- Helps address environmental sensitive areas

Ice loading performance is the same as the best performing steel core; heavy ice-centric options are available (e.g., AZR AI).

There is an ACCC[®] option to meet ANY extreme ice criteria

Based on findings from recent Power Engineers study with structure height as varied parameter		ACSR	ACCC®	
Conductor name Line configuration, 230 kV Diameter (in) per wire Aluminum area (kcmil) per wire Ampacity @ max op Weight (lbs/kft) Span length (ft) Structures needed/ mile Structure Height (ft) Resistance at average load of 800 NESC case Tension @ NESC 250B (lbs/wire)	Conductor name	Tern	Cardinal	
	Line configuration, 230 kV	Double bundle	Single	
	Diameter (in) per wire	1.063	1.198	
	Aluminum area (kcmil) per wire	795	1221.8	
	Ampacity @ max op	1917	2005	
	Weight (Ibs/kft)	1790	1225	
	Span length (ft)	500 - 1000	500 - 1000	
	Structures needed/ mile	5.3 - 10.6	5.3 - 10.6	
	Structure Height (ft)	81.3 – 102.2	75.6 - 95.6	
	Resistance at average load of 800A	0.0637	0.0896	
	NESC case	Medium	Medium	
	Tension @ NESC 250B (lbs/wire)	6,928 - 8,320	8,857 - 10,089	
	Maximum thermal sag (ft)	14.8 – 35.7	9.1 – 29.1	
Project costs (\$/mile)	Conductor costs	\$139,709	\$172,973	
	Structure, construction and other costs	\$1.54M - \$1.63M	\$1.12M - \$1.25M	
oje((\$/I	Total capital cost	\$1.69M - \$1.77M	\$1.30M - \$1.42M	
Ā	20 - 23% lower cost with ACCC [®] enabled by shorter towers			

Lower Up-Front Costs & Higher Line Capacity

ACCC InfoCore® System offers a quick & convenient way to assess powerline condition

Gives you ability to evaluate conductor integrity and **identify and prioritize repairs, preventing costly outages**, especially after severe weather events or suspected physical damage

Cost-effective Transmission Expansion

- ADVANCED RECONDUCTORING means grid capacity with SPEED and RESILIENCE
- **REBUILD** faster and at lower cost

CTC GLOBAL

- NEW LINES with Advanced Conductors is a win for consumer, the environment, and the grid
- ACCC[®] Conductor has experience and performance: THE ADVANCED CONDUCTOR

The most tested, certified and used advanced conductor

