

Advanced Conductor Technologies

Christopher P. Soderman Director – Transmission Line Engineering June 18, 2025

Purpose of Advance Conductors

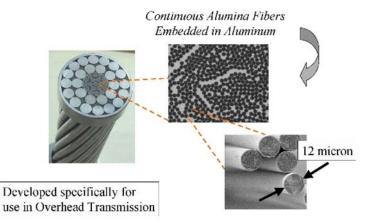
- With increased line loadings identified in the early 2000s, the industry became concerned with thermal rating of transmission lines and clearances to ground and other nearby objects
- Many solutions have been developed over the years to combat these issues and unlock additional capacity on the transmission system

Aluminum Conductor Steel Reinforced (ACSR)

- The default conductor for many utilities across the country, first installed in the early 20th century
- Originally designed to maximize strength and conductivity taking advantage of the skin effect limiting current to outer layers
- Maximizes balance of strength of steel core to minimize sags and save money on aluminum
- Outer layers of aluminum are hardened through mechanical means, limiting the long term operating temperature to 93°C to avoiding annealing and weakening of conductor

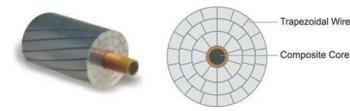
Relies on composite performance of aluminum and steel

EVERS€I

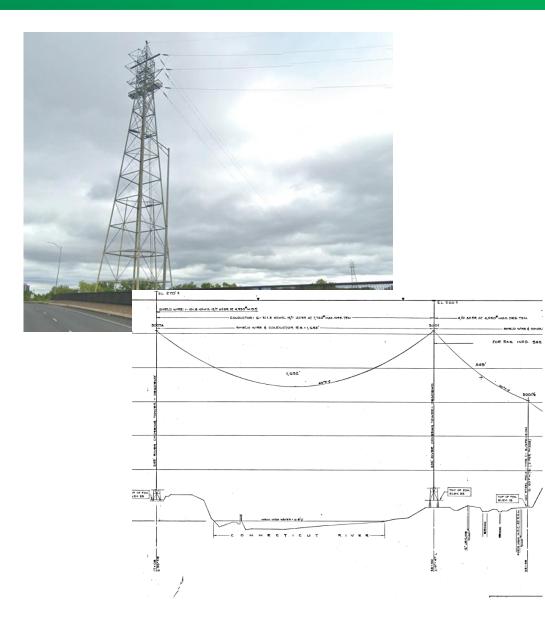

- In this case, the aluminum is fully annealed and all the tension is supported by the steel core
- Steel expands less with increased temperature than aluminum, thus reducing sag at higher temperatures
- Steel core provides low expansion under tension loads (wind and ice)

Aluminum Conductor Composite Reinforced (ACCR)

- Developed by the 3M Corporation in early 2000s
- Uses doped aluminum to provide thermally resistant aluminum (sustained temperatures as high as 240°C)
- Core relies on strong alumina fibers suspended in an aluminum-zirconium matrix
- Very sensitive to bending; requires special installation wheels and deadend grips



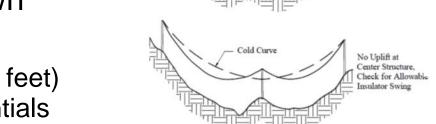
Chemically and Thermally Stable Constituents



Carbon fiber composite core technologies

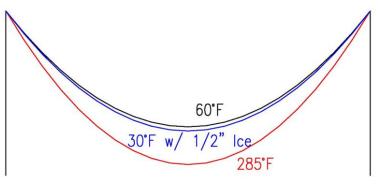
- Low expansion with increased temperatures (mated with fully annealed aluminum)
- Low modulus of elasticity resulting to increased elongation under tension loads (wind and ice)
- Very flexible using standard installation reels
- High maximum tensile load/rated breaking strength, allowing for increased tension for special circumstances

Application Discussion - Where do these technologies fit?


On long spans, ACCR, ACCC and TS conductors offer the ability for increased tensions to have lower sag and therefore short structures

EVERS

- Ability to reuse/reconfigure existing structures to keep project costs down
- Typically, long span conductor attachments are taller than neighboring structures, eliminating concerns with uplift


Application Discussion - Where is ACSS better?

- Short span transmission lines, particularly in up-and-down rolling terrain
 - Short spans (less than 600 feet) limit savings in sag differentials
 - Increased tensions to limit sag with composite core technologies will lead to structures in uplift requiring more expensive structures
 - The entire range of conductor sags must be considered (difference between minimum sag and maximum sag)

Cold Curve

Uplift Exists at Center Structure

Sag & Tension Comparison		ACSS	AC	CC		TS Conductor
		EHS Steel	ULS	ULS AZR	ACCR	Max Core
Conductor Size	kcmil	1272	1582	1582	1272	1619
Diameter	inch	1.382	1.345	1.345	1.35	1.382
Weight	#/foot	1.631	1.5629	1.5661	1.326	1.63238
	Cable					
Weather Case	Condition					
Rule 250B	Max Sag	14.46	14.05	14.06	13.05	14.47
Uplift	Initial	9.32	8.08	9.61	8.85	9.69
200°C	Max Sag	20.03	14.08	19.23	24.77	13.94
120 MPH Wind	Max Sag	17.20	16.81	16.83	15.88	17.00
NH Ice (1.5")	Max Sag	19.53	19.66	18.91	17.73	19.06
Maximum Difference		10.71	11.58	9.62	15.92	9.37
Summer LTE Rating	Amps	2906	3172	3118	2976	3231

"Best" conductor for a project depends on the situation

- ACSS strikes the right balance between performance and cost for most applications
 - Low sag under ice and wind conditions, which are typically more challenging design conditions in New England than hot summer days
- Composite core technologies are useful in specific circumstances
 - Typically useful for long spans (e.g. river crossings) where cost savings from shorter towers can offset higher conductor costs
 - Eversource has ACCR at several crossings of the Connecticut River and is evaluating the use of TS Conductor for the proposed rebuilds of two crossings south of Middletown, CT
- All conductor types provide significantly higher capacity than ACSR
 - Older transmission lines typically use smaller-diameter ACSR
 - All newer conductor types (ACSS, ACCC, etc.) provide substantially higher capacity
 - But, is it wise to install new, more expensive conductors on aging structures?

EVERS€l

