

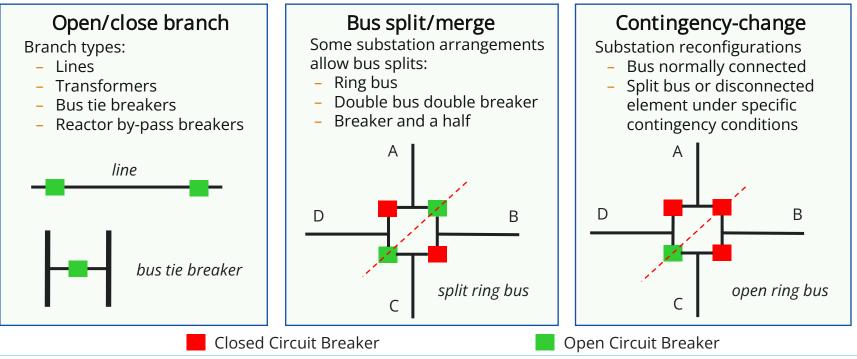
TRANSMISSION TOPOLOGY OPTIMIZATION: A SOFTWARE GRID-ENHANCING TECHNOLOGY

ISO-NE PAC Forum on Grid-Enhancing Technologies

Westborough, MA, June 18, 2025

Presented by: Pablo A. Ruiz, *NewGrid* and *The Brattle Group* Contributors: Joanne Bialas, *ISO-NE* Andrew Kopacka, *ISO-NE* Xiaoguang Li, *NewGrid* Jens Michaelsen, *ISO-NE*

TOPOLOGY OPTIMIZATION ENABLES FLEXIBLE GRID OPERATION


NewGrid topology optimization software quickly *finds* and *evaluates* reliable reconfigurations to reroute flow around congestion (*"Google Maps for the transmission grid"*).

- Fast search time: seconds to minutes.
- Reconfigurations implemented by opening or closing circuit breakers.
 - Analogous to temporarily diverting traffic away from congested roads to make traffic flow smoother.
- Technology supports transmission decision making processes.
 - Utilities already reconfigure the transmission system, based on staff experience, on ad hoc basis.
- Reconfigurations are **reliable** under all specified contingencies and do not radialize load beyond a user-specified value.
- Complements redispatch in congestion management.

THERE ARE DIFFERENT RECONFIGURATION ACTION TYPES

Optimization routines search for reconfigurations to relieve **one or more simultaneous constraints**, and identify **preventive or corrective solutions**. Reconfiguration actions vary depending on system topology, system conditions and congestion problem characteristics.

APPLICATIONS

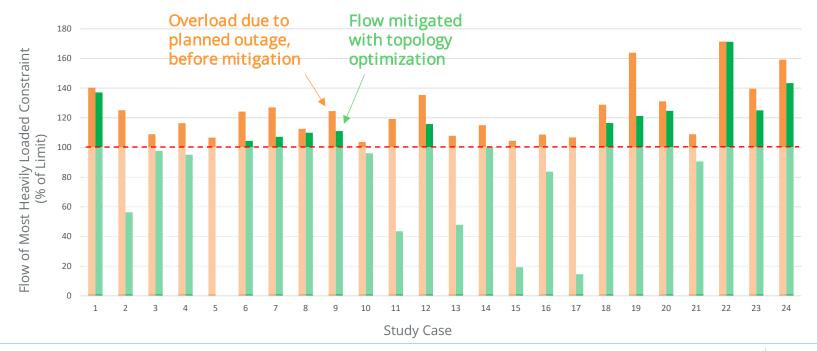
Topology optimization can support business processes across many scales.

	-	Adapt to emergency system conditions, increasing grid resilience
Real-time	-	Relieve N-1 flow violations
	-	Minimize Reliability Unit Commitment (RUC) and manual unit starts for constraint management
	-	Unlock capacity from export-constrained areas
Intra-Day	-	Minimize congestion costs in the real-time market
	-	Reduce renewables curtailments
	-	Pre-position the system topology to match expected conditions
Day-ahead	-	Minimize congestion costs in the day-ahead market
	-	Develop Op. Guides for extreme events that minimize load shedding
	-	Adjust underlying system topology when new projects are energized
Weeks to – Allow additional outages to occur reliably and economi		Allow additional outages to occur reliably and economically in outage scheduling & coordination
Months Ahead	Months Ahead – Mitigate the expected congestion impacts of outages	
	-	Optimize transmission expansion portfolio
Long-Term	-	Maximize the benefit-to-cost ratio of new projects

TECHNOLOGY APPLICATIONS AND SYSTEM INTEGRATION

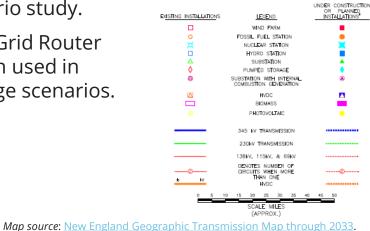
Processes	Technology User	Applications	System Integration	Timeframe
Reconfiguration Request Process	Market Participants (SOs, RCs and TOPs have the software needed to evaluate requests)	mitigation of major expected constraints	none	days / weeks / months ahead
Planning and Operations Planning Support	System Operator (SO), Reliability Coord. (RC), Transmission Op. (TOP)	operating/mitigation plan development, outage scheduling support, optimize transmission expansion	none to minimal (offline advisory tool)	days / weeks / months ahead
Real-Time Operations Support	SO, RC, TOP	reconfigurations tailored to address real-time conditions: mitigate overloads, release stranded generation	Energy Management System (EMS)	days ahead to real time
Market Clearing w/ Optimized Topology	Market Operator	continuous optimization of topology as conditions evolve to mitigate cost of congestion management	EMS and Market Management System (MMS)	days ahead to real time

Highest benefits


LESS RISK. MORE POWER.

ISO NEW ENGLAND PARTNERSHIP WITH NEWGRID

- ISO-NE has partnered with NewGrid, supported by MassCEC, to:
 - Reduce congestion in the ISO New England footprint through application of transmission switching solutions to obtain more efficient market outcomes.
 - Improve reliability by systematically running topology optimization software to identify switching solutions. Previously, these were found through experience of analyzing old outage combinations and are typically documented in procedures.
 - Cross-check previously identified switching solutions against NewGrid Router outputs and identify new ones.
- The following slides illustrate some results of ISO-NE's use of NewGrid Router in outage coordination support.
 - The study cases used with NewGrid Router have high flows or overloads on key constraints when planned outages are modeled. ISO-NE staff used NewGrid Router to identify reconfigurations that mitigate the high constraint flows.
 - ISO-NE staff recorded if a solution was *promising* given the specifics of the study.
 - Mitigated flow on most limiting transmission constraints by 31% on average.


REDUCED CRITICAL CONSTRAINT FLOW BY 31% ON AVERAGE


Topology optimization reduced by 31% on average the most heavily loaded constraint flows due to planned outages (before mitigation by ISO-NE staff), over all cases with promising solutions, and resolved the need for flow mitigation in 12 out of 24 cases.

EXAMPLE OF A SOLUTION IDENTIFIED BY NEWGRID ROUTER

- During an outage scenario of a 345kV line in the Maine area, loss of two additional major paths showed overloads.
- NewGrid Router offered reconfiguration options to off-load the most limiting path.
- Out-of-merit unit commitment needs were reduced in the outage scenario study.
- The options NewGrid Router offered have been used in subsequent outage scenarios.

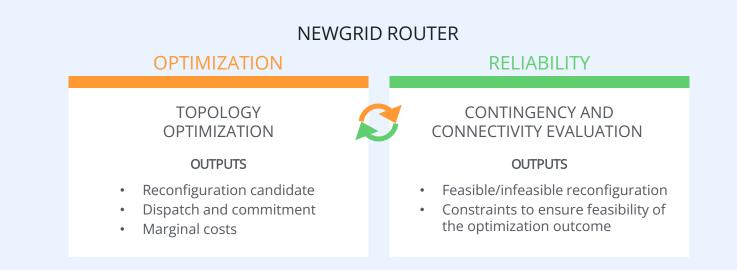
CONCLUDING REMARKS

- ISO-NE staff has successfully used NewGrid Router at scale for an extended period of time to demonstrate its potential value in support of Outage Coordination processes.
 - Mitigated flow on most limiting transmission constraints by 31% on average.
- NewGrid Router showed a strong potential to improve outage coordination processes.
- Implications once topology optimization system is fully implemented:
 - Reduce congestion in the ISO-NE footprint to obtain a more efficient market outcome.
 - Allow more maintenance, repair, and construction work to be performed.
 - Improve reliability by systematically running software to identify reconfiguration solutions.
 - Without the software support, these were found through experience.
 - Enable cross-checking previously identified reconfigurations against those from NewGrid Router and identifying new ones.
- ISO-NE and NewGrid continue to partner to support Outage Coordination processes.

CONTACT

Pablo A. Ruiz CEO and CTO Pablo.Ruiz@newgridinc.com +1.217.766.7602

444 Somerville Avenue Somerville, MA 02143



http://www.newgridinc.com

APPENDIX - TECHNOLOGY BACKGROUND

RELIABLE RECONFIGURATIONS

The reconfigurations are **reliable under all specified contingencies** (e.g., do not introduce new problems, and are consistent with mitigating the ongoing risks in operations) and **do not radialize load** beyond a user-specified value. They can be validated for transient and/or voltage stability performance as needed using existing software tools.

ISO NEW ENGLAND OUTAGE COORDINATION PROCESSES

- ISO-NE staff perform engineering analyses conducted on study power flow cases to
 - Determine the viability of major requested planned transmission and generation outages.
 - Develop solutions to mitigate outage impacts, if needed.
- ISO-NE Operating Procedure 19 (Transmission Operations) has steps for identifying and correcting reliability concerns; possible steps include committing out-of-merit generation and reconfiguration of the transmission system.
- After finding a solution, ISO-NE Outage Coordination verifies the solution will work over the duration of the outage under a variety of dispatch conditions.
- ISO-NE coordinates with the Transmission Owner to verify no adverse system impact to their customers/metrics/criteria.
- ISO-NE determines the system-wide congestion savings based on repositioning of outages, which is reported annually in the ISO-NE Transmission Equipment Outage Coordination report.