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Background

Discussions concerning the 2016 NEPOOL Economic Study request

are ongoing
— Monthly PAC presentations have been made since April 2016 to review
scope of work, assumptions, metrics and study results

During these discussions, the ISO committed to developing high
level order of magnitude cost estimates for the transmission
needed to integrate renewable resources during on-peak load

periods
— This work is being done as part of Phase 1 of the study

The I1SO has identified potential transmission planning issues that
will need to be addressed for the development of large-scale
inverter based resources, including operational issues presented by
off-peak load periods

— More details regarding these operational issues are included in the

presentation from the Electric Power Research Institute, available at

https://www.iso-ne.com/static-
assets/documents/2016/10/a3 integration and planning of large amounts of inverter b
ased resources.pptx
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Purpose of Today’s Presentation

 Review transmission flow results from the 2016 economic studies
— Those were included in the September PAC presentation but not discussed
at that time

* Present preliminary high order of magnitude transmission
development costs to integrate renewable resources in New
England

— These cost estimates are very preliminary and based on judgement
* They include costs that would be incurred beyond individual plant
interconnection costs

— They do not fully account for operational issues caused by the
development of large-scale inverter based resources during off-peak load
periods

— This presentation focuses on the cost of integrating the Maine renewable
resources

* Based on the results of the economic study, renewable resources outside of

northern and western Maine do not seem to cause a need for large scale
transmission expansion

— This cost analysis does not develop transmission expansion plans
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TRANSMISSION FLOW RESULTS

Executive Summary - September PAC Presentation




Summary: Transmission Flow Results

* Higher levels of wind resource additions in Northern New England
result in @ much greater use of the transmission system on the

northern interfaces
— The Orrington-South interface and the Surowiec-South interface become constrained

more frequently
— The northern interfaces see a larger daily variability in their flows, with the highest

variability generally occurring in the summer months
* Transfers are the highest in the early and late hours of the day; they are the lowest in the
middle of the day

* Large additions of offshore wind in SEMA/RI cause flows on the
SEMA/RI interface to reach greater magnitudes in both the import
and export directions

* This large volatility in interface flows (larger range and daily

variability) is not seen as much in Scenarios 4 and 5

— Scenarios 4 and 5 have little congestion
— This seems to imply that current resource locations are well integrated within the

transmission system
— The lack of intermittency of the resources in Scenarios 4 and 5 also contributes to

limiting interface flow volatility
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Observations From Chronological Interface
Flows

* Chronological curves for interface flows that are above 90% of limit show
the changes in the use of the transmission system between cases and over
time

— Scenarios 1, 2, and 3 generally show a higher amount of flows over 90% of limit

* Higher levels of wind resource additions in Northern New England result in a much
greater use of the transmission system on the northern interfaces

— Scenario 5 shows the least amount of flows over 90% of limit
* Current resource locations are relatively better integrated with the transmission system

— Scenarios 4 and 5 show a reliance on the transmission system that is limited to the
periods of higher loads (Summer and Winter seasons), while Scenarios 1, 2, and 3
show little seasonal difference

— The above trends are accentuated more in the 2030 Scenarios than the 2025

Scenarios
* A notable exception is the reduction in the use of the North-South interface in Scenario 3
in 2030 as compared with 2025
— This is attributable partly to the higher amounts of EE, PV, and battery storage (smaller
net load) and the higher amounts of off-shore wind in SEMA-RI

— Scenario 3 shows a heavier reliance on the SEMA/RI import interface than all other
cases
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Chronological Interface Flows Exceeding 90% of

Rating: 2030 Constrained Scenario 1

Chronological Interface Flows over 90%:
Case 203081
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Chronological Interface Flows Exceeding 90% of
Rating: 2030 Constrained Scenario 5

Chronological Interface Flows over 90%:
Case 2030S5
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Chronological Interface Flows Exceeding 90% of

Rating: 2030 Constrained Scenario 3

Chronological Interface Flows over 90%:
Case 2030S3
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Observations From Seasonal Flow Duration
Curves

e Seasonal flow duration curves for interfaces provide additional

intelligence on when and how interfaces become constrained
— In Scenarios 1, 2 and 3, the Orrington-South interface is often constrained,
due to the large addition of wind in the BHE area
* The longer durations of constraints are seen in the Winter and Fall seasons,
which are seasons with higher wind production
— In Scenario 2, which has the highest addition of wind in Maine, south of
the Orrington-South interface, the Surowiec-South interface also becomes
significantly constrained
— Scenarios 4 and 5 see very limited durations of constrained interfaces
— In the year 2030, Scenario 3 shows the largest spread of flows on the
SEMA/RI interface, with flows flowing both in the import and export
directions a large portion of the time
» Scenario 3 has the largest addition of SEMA/RI offshore wind among all cases
— Unconstrained Scenarios show maximum amounts of flows on the
interfaces, with flows reaching upward of 9,000 MW on the Orrington-
South, Surowiec-South, Maine-New Hampshire and North-South

interfaces in Scenario 2 for 2030
e Scenario 2 has, by far, the highest amount of wind additions in Northern New
England
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Seasonal Flow Duration Curves — Constrained
Scenario 2

Seasonal Flow Duration Curves for Case: 202552
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Seasonal Flow Duration Curves - Unconstrained

Scenario 2

Seasonal Flow Duration Curves for Case: 202552_UN
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Seasonal Flow Duration Curves — Constrained

Scenario 3
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Observations From Diurnal Flows of Interfaces

* Average diurnal flows give a sense of the daily variability of the
flows on each interface

— In constrained Scenarios 1, 2 and 3, which have high wind production,
there is a large daily variability of the flows over the interfaces
e 300 to 500 MW on Orrington-South, 300 to 1,000 MW on Maine-New
Hampshire, and 500 to 1,200 MW on North-South
— In Scenarios 4 and 5, that have the lowest wind production, this variability
is more limited
e 200 MW on Orrington-South, 400 to 500 MW on Maine-New Hampshire, and
700 to 1,000 MW on North-South
— In Scenarios 1, 2, and 3, the variability of the flows increases significantly
with transmission constraints, whereas there is only a slight increase for
Scenarios 4 and 5
* The highest increase is seen for Scenario 2 in year 2030, where the average
variability increases from 300 MW to 2,200 MW on the Orrington-South
interface and 300 MW to 3,000 MW on the Maine-New Hampshire interface
— In general, the highest daily variability occurs in the summer months

* Transfers are the highest in the early and late hours of the day, and the lowest
in the middle of the day

ISO-NE PUBLIC
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Diurnal Interface Flow: Orrington-South
2030 Constrained Scenario 2
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Diurnal Interface Flow: Orrington-South
2030 Unconstrained Scenario 2
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Diurnal Interface Flow: Orrington-South
2030 Constrained Scenario 4
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Diurnal Interface Flow: Orrington-South
2030 Unconstrained Scenario 4
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Observations From Interface Flows on
Representative Summer and Winter Days

* Interface flows on representative summer and winter days, show

the simultaneity of the flows across the various interfaces, in a
given hour of the day

— These graphs show that the simultaneous flows on the Orrington-South,
Surowiec-South, Maine-New Hampshire, and North-South interfaces are
consistently flowing in the North to South direction across all cases

* Within each Scenario, flows on all four interfaces are coherent and of the
same general order of magnitude, suggesting that almost all the energy
produced north of the Orrington-South or Surowiec-South interfaces flows to
the southern portion of the region

— The SEMA/RI interface is the only one for which flows vary widely
between the representative summer and winter days

* The SEMA/RI area is typically exporting power on the representative summer
day as a result of the high concentration of NGCC production in the area

* The SEMA/RI area is typically importing power on the representative Winter

day because some of the SEMA/RI NGCC production is replaced by wind
production from outside the area

ISO-NE PUBLIC
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MW Flows on Interfaces for Summer Peak Hour —
All scenarios

Interface Flows [08/02/25 Hour 17] Summer Peak
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MW Flows on Interfaces for Winter Peak Hour —
All Scenarios
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Observations From Interface Flows on
Representative Low Load Day

* Interface flows on representative low load day, shows the
simultaneity of the flows across the various interfaces, in a

given hour of the day
— These graphs show that the simultaneous flows on the Orrington-
South, Surowiec-South, Maine-New Hampshire, and North-South
interfaces are generally flowing in the North to South direction across
all cases. Surowiec-South, however, has very low flows for Scenarios 4

and 5

* Flows for the constrained and unconstrained cases show similar relative
patterns for 2025 and 2030

* Scenario 2 has the highest utilization of the transmission system, but this
is lower than the summer peak day and much lower than the winter peak
day

e Scenario 3 has the highest utilization of SEMA-RI in 2030 as compared
with the other scenarios

e Scenario 4 has the lowest utilization of the Maine interfaces

ISO-NE PUBLIC
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MW Flows on Interfaces for Low Load Hour —
All Scenarios
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PRELIMINARY HIGH ORDER OF MAGNITUDE
TRANSMISSION DEVELOPMENT COSTS




Transmission Needed to Integrate Renewable
Resources — Collector and Interconnection System

* Four categories of transmission upgrades are needed to

integrate renewable resources

* Plant collector system
— Transmission system tying each

POl or
connection -
to the grid Collector System
Station
/ .
/ O O
O ¢ a ®
Interconnection 0 ©
Transmission Line 0 Qo —e
@ @)
O]
O
Q ®
9,
O & O @ ® G
O O o O
O e/o
® Q
Q O
Q o @ ®
Q ' Individual WTGs
®) O o
Q Q
O 0

Feeders and Laterals (overhead
and/or underground)

individual wind turbine generator or
photovoltaic generator to the collector
system station

May include generator step-up
transformers, collector strings , collector
substation, collector step-up
transformer, supplemental static and/or
dynamic reactive devices

* Interconnection system
— Transmission system tying the collector

ISO-NE PUBLIC

system station to the Point of
Interconnection (POI)

May include high-voltage AC generator
lead, high-voltage substation,
supplemental static and/or dynamic
reactive devices
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Transmission Needed to Integrate Renewable
Resources — Integrator System

Integrator Syste

AC Bulk Power System

I1SO-NE PUBLIC

* Integrator system
— Transmission system tying the POI

to the interconnected bulk power
system

May include new high-voltage AC
or DC lines and converter stations
and supplemental static and/or
dynamic reactive devices
Conceptually, similar type of
upgrades to those considered in
the on-going 2016 Maine

Resource Integration Study
* Available at https://smd.iso-
ne.com/operations-
services/ceii/pac/2016/09/a3 maine resou
rce_integration study.pdf

26


https://smd.iso-ne.com/operations-services/ceii/pac/2016/09/a3_maine_resource_integration_study.pdf
https://smd.iso-ne.com/operations-services/ceii/pac/2016/09/a3_maine_resource_integration_study.pdf
https://smd.iso-ne.com/operations-services/ceii/pac/2016/09/a3_maine_resource_integration_study.pdf
https://smd.iso-ne.com/operations-services/ceii/pac/2016/09/a3_maine_resource_integration_study.pdf
https://smd.iso-ne.com/operations-services/ceii/pac/2016/09/a3_maine_resource_integration_study.pdf
https://smd.iso-ne.com/operations-services/ceii/pac/2016/09/a3_maine_resource_integration_study.pdf

Transmission Needed to Integrate Renewable
Resources — Congestion Relief System

* Congestion relief system

— Transmission system that allows the ? 7 \ L
removal of 100% of the transmission L o
congestions that prevent full energy 4 oM ER( ==
production from the renewable AN N
resources ¢ i ,fm "‘ﬁ“ﬁt&w o

— Assume HVDC tie(s) tying the integrator
system to the system’s hub, located at
Millbury, MA o

« HVDC tie(s) sized to remove congestions i« PG
observed in the energy production runs

» Ancillary devices/services to control
impact of high penetration of converter

based resources
— Special controls on power electronic

devices {yiarord Worok: At -
— High inertia synchronous condensers ﬁ'j@ don e
— System protection upgrades - gp/mxm v
— Additional battery storage RSO ong sLAN R)

I1SO-NE PUBLIC
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Cost Estimates For Renewable Resources
Integration - Assumptions

A full cost estimate would include costs for all four categories of

transmission upgrades
— Plant collector system
— Interconnection system
— Integrator system
— Congestion relief system

* Plant collector and interconnection system costs are specific to each

generation interconnection project
— They will not be addressed as part of this presentation

* Integrator and congestion relief system costs depend on the design
of the integrator and congestion relief systems

« The amount of renewable injections in Scenarios 4 and 5 is very

small (see next slides)
— No cost estimates are developed for these two scenarios

ISO-NE PUBLIC
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Sizing and Cost of the Integrator System

For the purpose of this costing exercise, it is assumed that the size
of the integrator system will be proportional to the size of the

nameplate renewable injection

Scenarios
1 2 3 4 5
Number
2030 Maine
Nameplate Wind 2,955 12,872 3,652 308 308
Injections
16,000  BHE Wind Added
B ME Wind Added

S 14000 VT Wind Added

= B NH Wind Added

z 12,000 WMA Wind Added

S W SEMA/RI Offshore Wind Added

T 10,000 -

© M 1.3.9 SEMA/RI Offshore Wind

Q

2 8000

5]

=3

O 6,000

£

5]

Z 4,000 -

o

£

= 2,000 -

.

—

Il %‘

2025_S1 202552 202553 2025_S4 2025_S5

2030_51 2030_S2 2030_S3 203054 2030_S5

Slide 14 - August PAC presentation, available at
https://www.iso-ne.com/static-
assets/documents/2016/08/a6 2016 economic

study draft results.pdf
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Sizing and Cost of the Integrator System

e Scenariol

— The size of the Maine renewable injection is somewhat commensurate to

what is being considered in the 2016 Maine Resource Integration Study
» Detailed costs estimates for the conceptual AC transmission upgrades considered in
the study will be shared with the PAC in late 2016 or early 2017
* However, the infrastructure being studied may not be capable of interconnecting
3,000 MW

— Expected high-level estimates are in $1.5 billion range for the parallel 345 kV
transmission path of the combination option

* Scenario 3
— The size of the Maine renewable injection is larger to what is being considered
in the 2016 Maine Resource Integration Study
— Assuming that the conceptual AC transmission upgrades would have to be
doubled to form two parallel 345 kV transmission paths, expected high-level
estimates are in the $3 billion range

Costs described here are preliminary high-level order of magnitude costs and are based on judgement.
Also, they do not account for individual plants’ interconnection costs or potential costs from system operational issues.

ISO-NE PUBLIC
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Sizing of the Integrator System, cont.

* Scenario 2 M

— The size of the Maine renewable
injection is over five times larger
than what is being considered in
the 2016 Maine Resource

Integration Study

* For such a tremendously large
injection, it is assumed that no
AC integrator system could be
designed to tie the POl into the
interconnected bulk power
system without a complete
overhaul of the AC bulk power
system

* |nstead, we assume that the
renewable resources will be tied <. 1.
directly into several DC ” )
connectors that will also serve as
congestion relief systems DC

POls

AC Bulk Power System

ISO-NE PUBLIC
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Sizing of the Congestion Relief System

 The MW congestion relief need is based on on-peak conditions (Winter and

Summer)

 |tis the difference in interface flows between the 2030 unconstrained and

constrained scenarios
— See slides 20 and 21 for reference

— For example, in scenario 1, the ME-NH flow in the winter peak hour is 3,285 MW in the

unconstrained case and 1,814 MW in the constrained case. The congestion relief need
on the ME-NH interface is 1,471 MW

interfaces

— Surowiec-South, ME-NH and North-South interfaces

The total need is based on the highest simultaneous need across all northern

Needed Congestion

. ) Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5
Relief Capacity
2030 Winter Peak 1,471 MW 9,043 MW 1,839 MW 8 MW 36 MW
2030 Summer Peak 603 MW 3,854 MW 500 MW 8 MW 8 MW
Higher of 1,471 MW 9,043 MW 1,839 MW 8 MW 36 MW

Winter/Summer

I1SO-NE PUBLIC
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Characteristics of the Congestion Relief System

* For the purpose of this analysis, we assumed that the

congestion relief system would be composed of

— DC portion: parallel overhead HVDC ties
* Bipolar design

Voltage-source converters (VSC)

1,200 MW capacity

— To respect 1,200 MW New England loss of source
— Among largest capacities seen for VSC technology

DC voltage of 300/320 kV
Assumed HVDC costs:
— Converter: $300 million/converter
— DC line: $3.5 million/mile
— Miscellaneous costs for additional control, filters, undergrounding or right-of-
way requirements: $200 million/tie
— Ancillary AC upgrades
* Fast-responding dynamic reactive devices
e 345 kV substation and network upgrades

Costs described here are preliminary high-level order of magnitude costs and are based on judgement.
Also, they do not account for individual plants’ interconnection costs or potential costs from system operational issues.

ISO-NE PUBLIC
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Ancillary AC Upgrades Associated with the

Congestion Relief System

 Sending end

— Fast-responding dynamic reactive devices
* Synchronous condensers (to increase system’s short circuit strength)
or
» Statcom devices (to maintain system’s voltage performance)
* Assumed to be part of the integrator system, except for Scenario 2

— Assumed need of 1/3 of MW capability
— Assumed cost of $0.25 million/MVAR

— 345 kV substation upgrades
* Assumed $10 million per terminal expansion in Scenarios 1 and 3
» Assumed $40 million per new substation (to connect the POls to the converter
station at each HVDC station) in Scenario 2

* Receiving end

— Fast-responding dynamic reactive devices in all three scenarios
* Assumed need of 1/3 of MW capability
* Assumed cost of $S0.25 million/MVAR

— 345 kV substation upgrades
* Assumed cost of $10 million per terminal expansion in all scenarios

— 345 kV system upgrades on receiving network
* Assumed additional generic cost of $500 million in Scenarios 1 and 3 and $1.5

billion in Scenario 2

Costs described here are preliminary high-level order of magnitude costs and are based on judgement.
Also, they do not account for individual plants’ interconnection costs or potential costs from system operational issues.

ISO-NE PUBLIC
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Total Cost Breakdown of the Congestion Relief System

Scenario 1 Scenario 2 Scenario 3
Congestion Relief System
1,471 MW (2 HVDC Ties) 9,043 MW (8 HVDC Ties) 1,839 MW (2 HVDC Ties)
Equipment S per Unit Quantities Total S Quantities Total $ Quantities Total $
HVDC Overhead e .o . 5% 400+3*300 = .o ‘
Lines $3.5 million/mile 2 *200 =400 mi. $1.4bn 2900 mi. $10.15 bn 2 *200 =400 mi. $1.4bn
Converters $300 million/converter 4 $1.2bn 16 $4.8 bn 4 $1.2bn
Misc. DC Additional - .
Equipment $200 million/tie 2 $0.4 bn 8 $1.6bn 2 $0.4 bn
Total — DC Portion -- - $3 bn - $16.55bn - $3 bn

AC Portion
Sending End - . -- Approx. 1/3 * 9,000 = -
Reactive Devices 50.25 million/MVAR (included in integrator system) B 3000 MVAR 50.75bn (included in integrator system) B
. $10 million/terminal expansion
E —
Zecn'g;:rgr\inna(iions (assumed 2 terminal expansions 2%2=4 $0.04 bn - -- 2%2=4 $0.04 bn
per tie)
8
Sending End — - . - -
New AC Substations 340 million/AC substation (included in integrator system) - (to connt.ect POIto co.nverter 30.32bn (included in integrator system) B
station at each tie)
Receiving End - - N B Approx. 1/3 * 9,000 = " _
Reactive Devices $0.25 million/MVAR Approx. 1/3 * 1500 = 500 MVAR $0.13 bn 3000 MVAR $0.75 bn Approx. 1/3 * 1800 = 600 MVAR | $0.15bn
Receiving End — $10 million/terminal expansion
AC Term?nations (assumed 2 terminal expansions 2%2=4 $0.04 bn 8%2=16 $0.16 bn 2%2=4 $0.04 bn
per tie)
Receiving End — .
Additional Upgrades Assumed gi::r::ricc?St for each - $0.5 bn - $1.5bn - $0.5 bn
on AC Network
Total — AC Portion - - $0.71 bn - $3.48 bn - $0.73 bn

AC and DC Portions

;Zfizjf_s\(;;';gn'fs“"n - . $3.71bn . $20.03bn . $3.73bn
Costs described here are preliminary high-level order of magnitude costs and are based on judgement.
Also, they do not account for individual plants’ interconnection costs or potential costs from system operational issues.
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DC Portion of the Congestion Relief System

Scenario 1 Scenario 2 Scenario 3
n ion Relief
Co ge,St on rete 1,471 MW 9,043 MW 1,839 MW
Capacity (MW)
Technolo HVDC - 1200 MW HVDC - 1200 MW HVDC - 1200 MW
gy VSC, Bipolar VSC, Bipolar VSC, Bipolar
Number of HVDC Ties 2 8 2
Interconnected to AC system Radial Interconnected to AC system
Topology Connecting Larrabee 345 kV to Connecting POlIs directlyto | Connecting Larrabee 345 kV to
the Millbury hub the Millbury hub the Millbury hub
400 mi. (5 ties - for POls in
Aroostook/Penobscot
Mileage 200 mi. counties) 200 mi.
300 mi. (3 ties for POIs in
Somerset/Franklin counties)
Number of Converters 4 16 4
Misc. Additional Costs $0.4 bn $1.6 bn $0.4 bn
Cost for the DC portion $3bn $16.55 bn $3bn

Costs described here are preliminary high-level order of magnitude costs and are based on judgement.
Also, they do not account for individual plants’ interconnection costs or potential costs from system operational issues.
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AC Portion of the Congestion Relief System

Scenario 1 Scenario 2 Scenario 3
Congestion Relief Capacity (MW) 1,471 MW 9,043 MW 1,839 MW
Number of HVDC Ties 2 8 2

Receiving End

Reactive Devices -- 3000 MVAR -

AC Terminations 4 -- 4

New AC Substations - 8 -
Total AC portion — sending end $0.04 bn $1.07 bn $0.04 bn

Reactive Devices 500 MVAR 3000 MVAR 600 MVAR

AC Terminations 4 16 4

Additional upgrades on AC network 0.5 1.5 0.5
Total AC portion —receiving end $0.67 bn $2.41 bn $0.69 bn

Costs described here are preliminary high-level order of magnitude costs and are based on judgement.
Also, they do not account for individual plants’ interconnection costs or potential costs from system operational issues.
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SUMMARY




Summary

* The cost analysis in this presentation focuses on the cost of integrating the
Maine renewable resources

* Due to the very small amount of renewable injections and negligible need for
congestion relief in Scenarios 4 and 5, no cost estimates were developed for
these two scenarios

* High level order of magnitude costs were developed for scenarios 1 through 3

* These costs are high level order of magnitude since they were developed
based on a very high-level, un-tested, view of the necessary transmission
expansion needed to accommodate renewable integration

* |n other presentation, the ISO has identified potential transmission planning
issues that will need to be addressed for the development of large-scale
inverter based resources, including operational issues presented by off-peak
load periods

— Regulation, ramping, and reserves

— Low short circuit availability, power quality, voltage control, stability performance
— Control interactions between many power electronic devices

* The costs presented in this presentation do not fully account for all of those
transmission planning issues
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Summary, cont.

Scenario 1 Scenario 2 Scenario 3
2030 Maine Nameplate Wind
. 2,955 MW 12,872 MW 3,652 MW
Injection (MW)
Needed Congestion Relief 1471 MW 9,043 MW 1,839 MW

Capacity (MW)

Integrator System (Description)

1 AC parallel 345 kV path

2 AC parallel 345 kV paths

Integrator System (Cost $ Bn)

1.5

Congestion Relief System
(Description)

Connecting Larrabee 345
kV to the Millbury hub

Connecting POls
directly to the Millbury

Connecting Larrabee 345
kV to the Millbury hub

hub
Congestion Relief System 37 20,0 27
(Cost $ Bn) ' ’ ’
Total Cost (S Bn) 5.2 20.0 6.7
Total Cost (S Bn) + 50% margin 7.8 30.0 10.0

Costs described here are preliminary high-level order of magnitude costs and are based on judgement.
Also, they do not account for individual plants’ interconnection costs or potential costs from system operational issues.
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APPENDIX — TRANSMISSION FLOW RESULTS
Appendix - September PAC Presentation




CHRONOLOGICAL INTERFACE FLOWS
Exceeds 90% of Rating




Chronological Interface Flows Exceeds 90% of
Rating: 2025 Unconstrained Scenario 1

Chronological Interface Flows over 90%:
Case 2025S1_UN
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Chronological Interface Flows Exceeds 90% of
Rating: 2025 Unconstrained Scenario 2

Chronological Interface Flows over 90%:
Case 2025S2_UN
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Chronological Interface Flows Exceeds 90% of
Rating: 2025 Unconstrained Scenario 3

Chronological Interface Flows over 90%:
Case 2025S3_UN

Interface Flow (MW)
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Chronological Interface Flows Exceeds 90% of
Rating: 2025 Unconstrained Scenario 4

Chronological Interface Flows over 90%:
Case 202554 UN
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Interface Flow (MW)
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Chronological Interface Flows Exceeds 90% of

Rating: 2025 Unconstrained Scenario 5

Chronological Interface Flows over 90%:

Case 2025S5_UN
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Chronological Interface Flows Exceeds 90% of
Rating: 2030 Unconstrained Scenario 1

Chronological Interface Flows over 90%:
Case 2030S1_UN
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Chronological Interface Flows Exceeds 90% of
Rating: 2030 Unconstrained Scenario 2

Chronological Interface Flows over 90%:
Case 2030S2_UN
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Chronological Interface Flows Exceeds 90% of
Rating: 2030 Unconstrained Scenario 3

Chronological Interface Flows over 90%:
Case 2030S3_UN

Interface Flow (MW)
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Chronological Interface Flows Exceeds 90% of
Rating: 2030 Unconstrained Scenario 4

Chronological Interface Flows over 90%:
Case 2030S4_UN
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Chronological Interface Flows Exceeds 90% of

Rating: 2030 Unconstrained Scenario 5

Chronological Interface Flows over 90%:
Case 2030S5_UN
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Chronological Interface Flows Exceeds 90% of
Rating: 2025 Constrained Scenario 1

Chronological Interface Flows over 90%:
Case 202581
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Chronological Interface Flows Exceeds 90% of
Rating: 2025 Constrained Scenario 2

Chronological Interface Flows over 90%:
Case 2025S2
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Chronological Interface Flows Exceeds 90% of
Rating: 2025 Constrained Scenario 3

Chronological Interface Flows over 90%:
Case 2025S3
3000
§2500-il!+:'—.4: — u—k—"‘—l—ril—ﬂ!ld & -
=
;2000
o * Vo O (oo . * 0
@ 1500
o
S 1000
o
€ 500
0
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
¢ ME-NH = NORTH-SOUTH » ORR_SOUTH = SEMA/RI e SURW_SOUTH

I1SO-NE PUBLIC

i C ] N -
ol 3| ”HI | vl I R



Chronological Interface Flows Exceeds 90% of
Rating: 2025 Constrained Scenario 4

Chronological Interface Flows over 90%:
Case 202554
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Chronological Interface Flows Exceeds 90% of
Rating: 2025 Constrained Scenario 5

Chronological Interface Flows over 90%:
Case 202555
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Chronological Interface Flows Exceeds 90% of
Rating: 2030 Constrained Scenario 1

Chronological Interface Flows over 90%:
Case 203081
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Chronological Interface Flows Exceeds 90% of
Rating: 2030 Constrained Scenario 2

Chronological Interface Flows over 90%:

Case 2030S2
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Chronological Interface Flows Exceeds 90% of
Rating: 2030 Constrained Scenario 3

Chronological Interface Flows over 90%:
Case 2030S3
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Chronological Interface Flows Exceeds 90% of
Rating: 2030 Constrained Scenario 4

Chronological Interface Flows over 90%:
Case 203054
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Chronological Interface Flows Exceeds 90% of
Rating: 2030 Constrained Scenario 5

Chronological Interface Flows over 90%:
Case 2030S5
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FLOW DURATION CURVES

Seasonal




Seasonal Flow Duration Curves -
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Seasonal Flow Duration Curves - Unconstrained
Scenario 2

Seasonal Flow Duration Curves for Case: 202552_UN
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Seasonal Flow Duration Curves - Unconstrained
Scenario 3

Seasonal Flow Duration Curves for Case: 2025S3_UN
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Seasonal Flow Duration Curves - Unconstrained
Scenario 4

Seasonal Flow Duration Curves for Case: 202554_UN
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Seasonal Flow Duration Curves - Unconstrained
Scenario 5

Seasonal Flow Duration Curves for Case: 2025S5_UN
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Seasonal Flow Duration Curves — Constrained
Scenario 1l

Seasonal Flow Duration Curves for Case: 2025S1
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Seasonal Flow Duration Curves — Constrained
Scenario 2

Seasonal Flow Duration Curves for Case: 202552
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Seasonal Flow Duration Curves — Constrained
Scenario 3

Seasonal Flow Duration Curves for Case: 2025S3
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Seasonal Flow Duration Curves — Constrained
Scenario 4

Seasonal Flow Duration Curves for Case: 202554
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Seasonal Flow Duration Curves — Constrained
Scenario 5

Seasonal Flow Duration Curves for Case: 2025S5
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DIURNAL FLOWS ACROSS INTERFACES
2025 AND 2030

Orrington South Interface
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Diurnal Interface Flow — Orrington South
2025 Unconstrained Scenario 1
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Diurnal Interface Flow — Orrington South
2025 Unconstrained Scenario 2
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Diurnal Interface Flow — Orrington South
2025 Unconstrained Scenario 3

Average Interface Flow ORR_SOUTH:
202553 _UN
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Diurnal Interface Flow — Orrington South
2025 Unconstrained Scenario 4

Flow (MW)

1500

1000

500

0

Average Interface Flow ORR_SOUTH:
202554 UN

A AL AN

_W'\VM vg\ﬁv Nr” va

’Wﬂv"

Jan Feb Mar Apr May Jun Jly Aug Sep Oct Nov Dec

e Average

IIIIIIIIIIII

78



Diurnal Interface Flow — Orrington South
2025 Unconstrained Scenario 5
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Diurnal Interface Flow — Orrington South
2030 Unconstrained Scenario 1
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Diurnal Interface Flow — Orrington South
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Diurnal Interface Flow — Orrington South
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Diurnal Interface Flow — Orrington South
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Diurnal Interface Flow — Orrington South
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Diurnal Interface Flow — Orrington South
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Diurnal Interface Flow — Orrington South
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DIURNAL FLOWS ACROSS INTERFACES
2025 AND 2030

Surowiec South Interface
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Diurnal Interface Flow — Surowiec South
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Diurnal Interface Flow — Surowiec South
2030 Scenario 5

Average Interface Flow SURW_SOUTH:
= 203052
2
g 2000
= 1500 NN VT WS N
1000
500
0
Jan Feb Mar Apr May Jun Jly Aug Sep Oct Nov Dec
e Average
.F [+ —— I~ -
iy | AT | e



Diurnal Interface Flow — Surowiec South

2030 Scenario 5
Average Interface Flow SURW_SOUTH:
s 203053
% 2000
£ 1500 \’\,
1000 WW\V’\ /N V(}v/\ AN N l'\wl w_
500 U v V V
0
Jan Feb Mar Apr May Jun Jly Aug Sep Oct Nov Dec
e Average
- F e ™ N T
el ”HI s T U I R



Diurnal Interface Flow — Surowiec South

2030 Scenario 5
Average Interface Flow SURW_SOUTH:
S 203054
% 1500
" 1000 -W\/J N\ W

500 \4\‘,\/\/ L\/ \"‘v’

0

Jan Feb Mar Apr May Jun Jly Aug Sep Oct Nov Dec

e Average

= Al e Ry N T
g | A I



Diurnal Interface Flow — Surowiec South
2030 Scenario 5

Average Interface Flow SURW_SOUTH:
2030S5

1000 'W\V‘V' \~
o WM MY

0

Flow (MW)

Jan Feb Mar Apr May Jun Jly Aug Sep Oct Nov Dec

e Average

- A T ~ g
ol 3| ”HI W% vl I R



DIURNAL FLOWS ACROSS INTERFACES
2025 AND 2030

Maine — New Hampshire Interface
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Diurnal Interface Flow: ME-NH
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Diurnal Interface Flow: ME-NH
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Diurnal Interface Flow: ME-NH
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Average Interface Flow ME-NH:

< 2030S3_UN
%3000
£ 2500 \
2000
_X‘A’ LJ\ A \ \
. \W AW i’\r,\ AW v
2% VELVALYARTALY:
0
Jan Feb Mar Apr May Jun Jly Aug Sep Oct Nov Dec
e Average
- e Sl = e - T
el ”HI s T U I ol —
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Diurnal Interface Flow: ME-NH
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Diurnal Interface Flow: ME-NH
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Diurnal Interface Flow: ME-NH
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Diurnal Interface Flow: ME-NH
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Diurnal Interface Flow: ME-NH
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Diurnal Interface Flow: ME-NH
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Diurnal Interface Flow: ME-NH
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Diurnal Interface Flow: ME-NH
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DIURNAL FLOWS ACROSS INTERFACES
2025 AND 2030

North South Interface
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Diurnal Interface Flow: North-South
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Diurnal Interface Flow: North-South
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Diurnal Interface Flow: North-South
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Diurnal Interface Flow: North-South
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Diurnal Interface Flow: North-South
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Diurnal Interface Flow: North-South
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Diurnal Interface Flow: North-South
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Diurnal Interface Flow: North-South
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Diurnal Interface Flow: North-South
2025 Constrained Scenario 1

Average Interface Flow NORTH-SOUTH:
202551

3000
2500

2000 ML AN A\
2000 3»'\; ”\W \4 AN, W#Ww \,v '

1000
500
0

Flow (MW)

Jan Feb Mar Apr May Jun Jly Aug Sep Oct Nov Dec

e Average

- A T ~ g
ol 3| ”HI | vl I R
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Diurnal Interface Flow: North-South
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Diurnal Interface Flow: North-South
2025 Constrained Scenario 4
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Diurnal Interface Flow: North-South
2025 Constrained Scenario 5
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Diurnal Interface Flow: North-South

2030 Constrained Scenario 1
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Diurnal Interface Flow: North-South
2030 Constrained Scenario 3

Average Interface Flow NORTH-SOUTH:
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Diurnal Interface Flow: North-South

2030 Constrained Scenario 4
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Diurnal Interface Flow: North-South
2030 Constrained Scenario 5
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SELECTED HOURS

Interface Flows




Interface Flows at Summer Peak Load (Aug 2)
All Cases
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Interface Flows at Winter Peak Load (Jan 16)
All Cases

2025 Interface Flows [01/16/25 Hour 18] Winter Peak
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Interface Flows at December Peak Load (Dec 8)
All Cases

2025 Interface Flows [12/08/25 Hour 18] December Peak
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Interface Flows at Low Load Hour (Mar 25)
All Cases

2025 Interface Flows [03/25/25 Hour 7] Low Load
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